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The transfer of a proton between two potential wells, as in a hydrogen bond, has been extensively studied.
However, transfer under the influence of an electric field has been studied to only a very limited extent. We
have used the system methylamine-proton-methylamine to help understand this type of transfer. It is a
fairly realistic model of systems that are of importance (e.g., amino acids) and is small enough to calculate.
The potential energy surface for the system has been determined by ab initio calculation, using Gaussian 94,
and the wave function of the proton then found using the three-dimensional Fourier grid Hamiltonian method.
The proton is transferred, with the aid of an external electric field, from a potential well approximately 1 Å
from one methylamine nitrogen to a well neighboring the other when the two nitrogens are constrained to
remain either 3.2 Å or 3.6 Å apart. When the methylamines are allowed to optimize without constraint, they
form a potential surface for the proton such that the proton is shared between the two molecules. Under
conditions in which the methylamines are constrained to be further apart than optimal, two separate potential
wells are formed which localize the proton in one or the other. The levels can be matched or mismatched by
application of an external electric field. The proton will pick the lower energy well; as the field causes the
energy in the upper well to drop below what had been the lower level previously, the proton shifts. We have
found that a field shift of less than 105 V m-1 causes a shift of the wave function peak from 15:1 in one
direction to a correspondingly complete shift in the other direction, with the 3.6 Å separation; the field change
needed is also small, but a bit less so, at 3.2 Å. The switching field is superimposed on a considerably larger
field due to the asymmetry in the wells. We do not calculate the transfer rate; the calculation should apply
as long as the rate of field change is slower than the transfer rate.

I. Introduction

A. Transfer of a proton between two potential wells has been
studied theoretically by a number of workers and is also well-
known experimentally;1-4 it is important in certain chemical
reactions and in biological systems. Work on proton transfer
in a proton wire has also drawn extensive interest. Recently,
Pomes and Roux5 have carried out a Feynmann path integral
formulation of this problem. These workers found a mechanism
for long-range proton transfer in which cooperative fluctuations
play a critical role. Kiefer et al.6 have proposed a model
applicable to hydrogen bonds in which a one-dimensional proton
coordinate is used. Their model depends on an effective
potential at each site, and the coupling between two electronic
states. Guo et al.7 carried out a Wentzel-Kramers-Brillouin
(WKB, semiclassical) calculation on the intramolecular hydro-
gen bond in malonaldehyde, considering the vibrational mode
effects on the tunneling splitting. Sanchez and Galan8 studied
proton transfer experimentally in the 3,5-dinitro-2-hydroxyben-
zoic acid/ammonia system, finding results consistent with proton
tunneling dependent on a hydrogen bond.

Relatively few cases of tunneling between two potential wells,
under the influence of an external field, have appeared in the
literature. Work by Dakhnovskii and co-workers has described
the consequences of a strong added electric field in effecting

an electron transfer. This group has solved a master equation
for several cases, including transfer of an electron in a polar
solvent,9 and in metal complexes,10 affected by the field from
a laser. Theoretical work by Cukier and co-workers has
generated several methods of computation, including methods
applicable to imposed fields. A four-level system, in which
two pairs of tunneling doublets existed, one pair in each well,
was used by Morillo et al.11 to show how the external field
controls proton transfer in the presence of vibrations. Morillo
and Cukier12 considered external field control of proton transfer,
in the presence and absence of a medium. Random fields were
applied, and the influence of solvent was considered, in a related
model by Cukier and Morillo.13,14 These models were able to
demonstrate that strong external fields are capable of suppressing
tunneling in systems with matched levels. They also showed
that added noise could affect, and sometimes effect, tunneling,
by partly destroying the ability of the external field to cause
the levels to be mismatched.

B. Although our calculation is done in the gas phase, we
are particularly interested in amides and peptides, as well as in
the transfer of protons along hydrogen bonds in these systems;
this has been studied explicitly by Kearley et al.15 There are
other systems that could be models of biological relevance,
including carboxylic dimers.16-18 While there is a limited
literature on transfer by tunneling of protons or electrons in an
external field, there appears to be very little if anything on field
assisted tunneling by protons in actual molecules which could
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be models for proteins. Much of the work on field assisted
tunneling consists of calculations on models, and the work on
actual molecules does not include external fields. Of course,
using actual molecules also means that the calculation must be
three-dimensional.

We will briefly discuss a possible application of the calcula-
tion to a problem in the condensed phase: in particular, we
have proposed a model for voltage gating of biological ion
channels in which the initial step is a transition across a critical
potential threshold.19 We propose that this critical initial step
is the transfer of a proton from one basic amino acid to another,
as the membrane is depolarized, thus removing a field even
larger than the transfer field found here, while in the presence
of a large background field. The background field is neces-
sitated by the polarization of the molecules by the charge on
the proton, and the field exists in the gas phase as well as in
the condensed phase. Fields of the necessary magnitude do exist
in ion channels,19-21 proteins that span membranes and transmit
ions. No explicit calculation of transfer rates is included here
nor is it necessary for the purposes of the model, if the transfer
rate is faster than 1µs, which is easily achieved. Other evidence
(e.g., from D2O effects,22,23 and the results of several other
experiments appears consistent with our suggestion; however,
because the calculation does not bear directly on the question,
we will not discuss it in detail.

II. The Model: Two Methylamines Plus Proton

The choice of molecules, two methylamines, allows rather
accurate computation. The complete calculation requires the
determination of a potential energy surface composed of several
thousand points (in our calculation, 4000-6000), for each of a
number of fields, and then the determination of the correspond-
ing proton wave function. Trying to do this for a much larger
system would have been impractical.

The accuracy requirements for the calculation are fairly
stringent; one must be able to see the shift in the proton with a
small field change superimposed on a much larger value due
to induced polarization. On the other hand, the fact that the
difference in field, not the absolute value, is critical, makes the
task in certain respects easier: the difference calculation can
be considered to be superimposed on an almost constant
background. It is possible, if one has the complete potential
energy surface (PES), with a range of fields, including zero field,
to find the proton wave function from the PES at each field.
The proton wave function can be found from the complete
potential energy surface (PES), at any field (Figure 1). To
obtain the wave function, we use a fully three-dimensional form
of the Fourier grid Hamiltonian (FGH) technique.

The fields required for a switch, as well as the extent of the
switch in proton wave function, must be determined: the ratio
of the wave function peak in the dominant well to that in the
other well may exceed 102, or be only, say, 1.5, a physically
considerably different case. We find a field of 0.5× 105 V
m-1 sufficient to effect a virtually complete switch (ratio of
wave function peaks in the two wells>10, for probability ratios
>102:1) in the case of N-N separation of 3.6 Å, while the wave
function peak ratio can be as low as 3:1 (probability ratio 10:1)
with the same field difference for 3.2 Å separation. A field
only slightly larger increases the probability ratio to over 102:
1. We are concerned with a transfer which is assumed to take
place in a time short compared with the time for the field to
change. Until the field changes, the proton remains in one of
the two wells, with almost no possibility of transferring back
until the field again crosses the value which allows the wells to

match. We therefore do not consider the dynamics of the
system, but assume that wave functions are static on the time
scale of the field, but with transfer fast compared to field
changes. While we do obtain the pair of levels showing
splitting, discussion of the implications for a transfer time, and
the importance, if any, of the transfer time for the biological
system, will be saved for later work.

III. Methods

A. FGH Method. The Fourier grid Hamiltonian (FGH)
method used in our calculations was first explicitly formulated
in one-dimensional cases in Marston and Balint-Kurti’s funda-
mental work.24 This method can be taken as a special case of
discrete variable representation methods (DVR)25-28 and is based
on the Fourier method of Kosloff.29 The most important
attribute of this method is its simplicity. In our ab initio
calculation, we extend it into a three-dimensional FGH formal-
ism, and the potential energy function is set up by extensive ab
initio calculation using the Gaussian 94 package.30 The grid
consists of a lattice of points that make up the three-dimensional
PES. We will discuss it in detail below. A limited version of
multidimensional system FGH for bound states has been given
by Dutta et al.31 Their basic strategy in going from one
dimension to three dimensions in their work is formally factoring
the three-dimensional Hamiltonian into three one-dimensional
Hamiltonians in Cartesian coordinates and then, in each dimen-
sion, applying one-dimensional FGH. The effective Hamilto-
nian in each dimension contains an averaged potential contri-
bution from other dimensions. Therefore, this kind of formalism
is like Hartree-Fock SCF and their equations are mean-field
equations. However, the correlation between different dimen-
sions has to be taken into account. The FGH equations have
to be solved sequentially until the ground-state energyE0

converges to the desired accuracy. Our three-dimensional FGH
is a straightforward tensor factorization and avoids the drawback
of losing correlation between different dimensions.

Since a local representation is the most efficient way to
implement a numerical calculation, the FGH method is based

Figure 1. The model system, consisting of two methylamines and a
proton: the configuration as shown is that of the optimized system.
The molecules: The N-N distance is 2.705 Å, N-H distances 1.140
Å and 1.565 Å (i.e., the N-H-N angle is a straight line, to within
0.1°). The C-N-N-C dihedral angle (i.e., between the C-N-N and
N-N-C planes) is-169.0°. The energy is-192.1438 au. All these
data come from the B3LYP/D95+* calculation; with the MP2/6-31+G*
calculation, the energy is larger.
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on the following consideration: the Hamiltonian operator in
the Schrodinger equation can be split into the sum of a kinetic
energy operator and a potential energy operator, the kinetic
operator is intrinsically local in momentum space, and the
potential operator is intrinsically local in configuration space.
Fourier transform emerges as a bridge between these two
representations. The three-dimensional FGH theory may be
expressed most comfortably in Kronecker tensor product and
Kronecker tensor sum formalisms. The details of the three-
dimensional FGH formalism are given in the appendix. In the
present section we give only the basic FGH framework.

1. Theory. Let H be a nonrelativistic Hamiltonian operator,
written as

in configuration space (q). Because the abstract Hilbert space
B of the state vectors of a quantum system can be represented
either in configuration space (q), asB(q), or in momentum space
(p), asB(p), these two Hilbert spaces are isomorphic to each
other by way of the original Hilbert spaceB. It is well-known
that the Fourier transformF[P,Q]

is such an isomorphism between Hilbert spacesB(q) and
B(p). For any linear operatorÂ(q) on Hilbert spaceB(q), the
corresponding linear operatorÂ(p) on Hilbert spaceB(p), under
the Fourier transformF[p,q], is

or

Accordingly, in the configuration representation, the Hamilto-
nian operator may be given formally as

where〈Q| is column vector of the Q-basis set, and|Q〉 is its
Hermitian conjugate row vector (we may consider this notation
as extended Dirac bra-ket symbols). The kinetic operator in
eq 4 can then be factored as

by using the unit operatorI ) |P〉〈P| ) |Q〉〈Q| (this closure
relation is universal on every representation of Hilbert space
B), where

are the kinetic energy operator in momentum representation,
and the forward Fourier transform and its inverse. The general
form of the elements in the formal matrix〈P|Q〉 is

Inserting eq 5 into eq 4 one obtains

The matrix element inH(Q) is

Equations 7 and 8 are the theoretical basis of the FGH method.
2. Accuracy. As indicated by Marston and Balint-Kurti,

one-dimensional FGH calculations yield highly accurate eigen-
values and eigenfunctions. The PES limits the accuracy of the
FGH method, and it is an intrinsic error source in the calculation.
As a direct input to the FGH method, the PES cannot be
improved by the FGH calculation. By using two grid point
range schemes, one with 65 and the other 129 points, Marston
and Balint-Kurti applied their one-dimensional FGH on a well-
known Morse potential Hamiltonian system, H2. The lowest
eigenvalue differs by only 10-8 au from that of the analytical
eigenvalue in both schemes. The corresponding FGH eigen-
functions also show very good accuracy in both magnitude and
curvature. We repeated their calculation using our own one-
dimensional FGH program and obtained similar results.

The major error produced in FGH calculation comes with
the truncation and discretization (trunc-disk) of configuration
space from continuous infinite range (-∞, +∞) to discrete finite
range{p-[(N-1)/2], p-[(N-1)/2] + 1, ..., p-1, p0, p1, ..., p[(N-1)/2]}.
After this operation, the FGH is exact without losing any further
accuracy. Unfortunately, as with semiclassical methods, which
have become powerful tools in quantum mechanical calculation
in recent decades, there is no pure mathematical formalism that
can be used in error analysis of FGH methods. Generally, a
function that is bounded in momentum space is equivalent to
the Fourier transform of the function being band limited. The
accuracy of a discrete grid point representation of the function
is assured by the well-known Shannon sampling theorem,32

which states that the functional values should be given by a
sufficiently dense set of equally spaced sampling points.

For the three-dimensional FGH method, the three-dimensional
symmetric harmonic Hamiltonian system has been tested using
our FGH program.

It is well-known that the symmetric three-dimensional
harmonic potential Hamiltonian in atomic units is

A (9,9,9) grid point scheme, with lattice spacing 0.835 au,
and a (15,15,15) grid point scheme, with lattice spacing 0.653
au, have been calculated. The FGH zero-point energy in the
(9,9,9)-scheme is less than 10-4 au different from the analytical
result, while that in the (15,15,15)-scheme is less than 10-8 au
different from the analytical result in the lowest state, 10-7 au
in the highest tested (see Table 1Additional levels were
calculated, with comparable accuracy. The three-dimensional
particle in a box is not a suitable potential for this approximation,
because moving the position of the wall between grid point
positions produced discrepancies large compared to those shown
above. Solving for a molecular wave function uses a smooth
PES, much more like that of the harmonic oscillator; therefore,
the particle in a box problem was not considered further.

B. Ab Initio Calculation of Potential Energy V(x). A
proton moving between two methylamines has been used as
our model system. The potential energyV(x) is determined
using the Born-Oppenheimer approximation. A second sepa-
ration of time scales is possible. Orientational degrees of
freedom of an interacting pair of nonlinear polyatomic molecules
generally fluctuate slowly compared to the intramolecular
vibrations. One model which may describe a general proton

Ĥ(q) ) T̂(q) + V̂(q) (1)

Ψ(P) ) F[P,Q]Ψ(Q) (2)

A(P) ) F[P,Q]A(Q)F-1[P,Q] (3a)

A(Q) ) F-1[P Q]A(P)F[P,Q] (3b)

H(Q) ) 〈Q|H|Q〉 ) 〈Q|T|Q〉 + V(Q) (4)

T(Q) ) 〈Q|T|Q〉 ) 〈Q|P〉〈P|T|P〉〈P|Q〉

) F-1[P,Q]T(P)F[P,Q] (5)

T(P) ) 〈P|T|P〉, F[P,Q] ) 〈P|Q〉, F-1[P,Q] ) F[Q,P]

〈p|q〉 ) 1

x2π
eipq (6)

H(Q) ) F-1[P,Q]T(P)F[P,Q] + V(Q) (7)

Hq′q ) 〈g′|H|q〉 ) ∫〈q|p〉Tp〈p|q〉 dp + V(g) δ(q - q) (8)

H )
px

2 + py
2 + pz

2

2
+ 1

2
(x2 + y2 + z2) (9)
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transition process properly has the molecules rotationally and
translationally frozen, while their relative hydrogen bond
distance varies. The extent to which proton tunneling plays a
role depends on the extent of the vibrational overlap between
the initial and final states. In our model, a homogeneous
external electric field is applied to the model system consisting
of two weakly interacting molecules, and the adiabatic ap-
proximation is assumed to be valid for all electrons, thus
defining the potential energy surface. However, proton transi-
tions between two potential wells, one associated with each of
the two molecules, may be considered as quantum transitions
among vibrational-like levels of the proton in a potential surface
dictated by the configuration of all other atoms.

The environment of a model system has a strong influence
on the proton motion in H-bonds because of the high polariz-
ibility of the H-bond and the molecules as well as the large
magnitude of the field. The local electric field changes the
potentials of the H-bond protons and changes their symmetry.
A dipole moment different from zero arises when the symmetry
of the potential is disturbed (e. g., by an external electric field
with a nonvanishing component in the bond axes). The potential
well in the field direction is lowered, causing the wave function
to become asymmetrical, too. In the ground state, the position
probability becomes greater in the lower well than in the higher
well; therefore, the hydrogen bond is polarized in the direction
of the field. In the first excited state, however, the position
probability increases in the higher well; the H-bond is polarized
against the field. Our ab initio plus FGH results are consistent
with the expectation that the wave functions are extremely
sensitive to disturbances of the symmetry of the potential surface
topology. The polarization of the environment makes a
significant contribution, even in the gas phase, where the
environment consists entirely of the two methylamine molecules.
In a condensed phase, this energy could be larger or smaller,
depending on surrounding dipoles and higher multipoles,
including induced dipoles. The induced reorganization energy
depends on the polarizibility, and is not considered quantitatively
here. However, the effect appears even in this gas-phase
calculation, with the background field required to compensate
the reorganization energy of the two molecules (see Table 2).

The model, two methylamines plus one proton, has been fully
optimized first at Hartree-Fock self-consistent field (HF-SCF)
level with 6-31G** basis set, then at B3LYP/D95+* level. It is
well-known that the HF method is good for calculation of
molecular geometry and vibrational modes, because the HF
method with basis set 6-31G* gives accurate bond lengths and
bond angles (<1%).33 However, we need more accurate energy

values than HF-SCF provides, so this technique, although fast,
was used primarily for comparisons and tests. Hartree-Fock
Kohn-Sham (HF-KS) theory or hybrid theory has become
more popular in calculations of electronic structure of molecules
in the past decade,34-36 although its mathematical foundation
has been given only 5 years ago.37 HF-KS theory includes
several variations: Barone and Adamo38 have used the B3LYP
method to study proton transfer in the ground and lowest excited
states of malonaldehyde, with excellent results. The accuracy
of Becke-Perdew (BP) and Becke-Lee-Yang-Parr (BLYP) is
comparable to that of MP2, second-order Møller-Plesset
perturbation theory,39 in descriptions of hydrogen bonding.

There are three levels of basis sets that have been extensively
applied to hydrogen bonding: minimum Slater bases, double-ú
bases, and double-ú plus polarization bases.40 Kollman41

indicated that the double-ú plus polarization and diffuse function
bases do extremely well in prediction of the hydrogen bond
energy. The basis set 6-31G** can be considered an extended
basis set of the double-ú plus polarization type, for all atoms.
We have used the D95+* basis set, which includes electron
correlation energy and allows for polarizibility in the wave
function, with the B3LYP calculation, in post-HF optimization.
The 6-31+G* basis set, in which the proton polarizibility is
ignored (it is not important), but diffuse functions for heavy
atoms are included in the basis set, with the MP2 method used
at post-HF level PES scanning.

After full optimization, the nitrogen-nitrogen (N-N) distance
was extended to 3.2 Å and 3.6 Å and the system partially
optimized at these fixed N-N distances (i.e., optimized save
for the constraint on the N-N distance). To study how the
proton tunnels under the influence of an external electric field
between the two fixed methylamines, we start with the Born-
Oppenheimer approximation and calculate ab initio energies for
each of the levels of approximation for the three methylamine
configurations (fully optimized, and N-N distance of 3.2 Å or
3.6 Å, with the other atoms optimized). The proton in each
case is placed on each lattice point of a grid between the N
atoms of the two methylamines. The energy is calculated in
these several thousand positions, including the effect of the
proton on the methylamine molecules, the configuration of
which remains unchanged during this calculation. The PES
consists of the ground-state electronic energies resulting from
this set of calculations. The grid itself is Cartesian, as required
for a 3D FGH calculation. The PES consists of the proton
energy, in the presence of the methylamines, at all grid points.

A lattice spacing of 0.1 Å was estimated to provide adequate
energy accuracy, with attainable computation times. It was

TABLE 1: Eigenvalues (au) for 3D Harmonic Oscillator, with FGH Approximation

quantum
numbers (9,9,9) grid (15,15,15) grid

analytical
values degeneracy

(0,0,0) 1,499 979 569 192 1,499 999 998 013 1,500 000 000 1
(1,0,0) 2,500 152 638 083 2,500 000 020 381 2,500 000 000 3
(1,1,0) 3,497 712 218 151 3,499 999 285 770 3,500 000 000 3
(2,0,0) 3,500 325 706 975 3,500 000 052 601 3,500 000 000 3
(2,1,0) 4,497 885 287 043 4,499 999 308 139 4,500 000 000 6
(1,1,1) 4,500 498 775 867 4,500 000 084 021 4,500 000 000 1

TABLE 2: Optimized Configurations and Corresponding DFT Energy

B3LYP/D95+*
level optimized

energy
(au)

N-Nb

distance (Å)
N1-P

distance (Å)
P-N2

distance (Å)
C1-N1-N2
angle (deg)

N1-N2-C2
angle (deg)

C1-N1-N2-C2
dihedral angle (deg)

Fopt -192.1438 2.705 1.140 1.565 111.5 112.4 -169.0
3.2 Popt -192.1403 3.200 1.070 2.130 111.4 113.6 -165.9
3.6 Popt -192.1321 3.600 1.051 2.549 111.4 114.1 -165.1

a Fopt, fully optimized. Popt, partially optimized.b N-N distance constrained.
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impractical, because of the time required, to do a 0.1 Å scan of
the complete energy surface. However, it was more accurate
to do the FGH on a 0.1 Å lattice, so an interpolation procedure
was developed. Except in the critical regions of the PES (5×
5 × 25 points, for 3.6 Å, and 5× 5 × 21 points, for 3.2 Å
N-N separation, with the region defined around the N-N axis),
where the complete 0.1 Å lattice was always computed, the
energy was evaluated on a 0.2 Å lattice and a three-dimensional
cubic spline interpolation technique (3D-CSI) used to complete
the lattice for the FGH determination of the wave function. The
code for the 3D-CSI was developed by Adams.42 The complete
lattice was 15× 15 × 21 for the 3.2 Å case and 15× 15 × 25
points for the 3.6 Å case.

While one-dimensional cubic spline interpolation has been
extensively used in potential energy surface calculations, very
few examples of 3D-CSI of PES have been published due to
its lower accuracy. The first serious tests of 3D-CSI have been
given by Sathyamurthy and Raff.43 They found a (15,15,15)
grid point cubic spline interpolation did not possess sufficient
accuracy to give a point-to-point match of a quasiclassical
trajectory to that obtained on the analytical surface, although
the total reaction cross sections, energy partitioning distributions,
and spatial scattering distributions computed by quasiclassical
trajectories on the spline surface were in good accord with those
obtained from the analytic surface. However, we choose three-
dimensional cubic spline interpolation based on the quality of
the interpolation of the PESs of our models. Because all of
the PESs used in our work are basically of quadratic form, and
their curvature changes smoothly and linearly, our cubic spline
interpolation PES is much more accurate than that in Sathya-
murthy and Raff’s work. We tested our interpolation scheme
for one case, a Hartree-Fock PES, as this could be determined
at all grid points for comparison with the interpolated value;
however, the quality of the interpolation will be the same for
the post HF wave functions, because the curvature is not
significantly different, and the FGH procedure identical. The
results for the error (interpolated less directly computed values)
in the wave function are (averaged over all grid points):

where∆Ψ ) Ψ′ - Ψ, and Ψ,Ψ′ are wave function values
based on the spline values and the complete grid at correspond-
ing grid points,E(*) is the average value of random variable
(*), and σ(*) is the standard deviation. The interpolation is
excellent near the peaks of the wave function. This is also true
near the barrier maximum. What error exists in interpolation
comes in the region of high slope of the PES. In other words,
the error, to the extent that it exists, has no practical effect at
all on any feature of the wave function involved in the
conclusions. The corresponding average errors for the PES are

IV. Results

A. Zero Field. The optimization for the system was done
using the density functional theory B3LYP approximation,
which allowed for partial correlation energy as well as polariza-
tion of the orbitals. This produces a N-N distance of 2.71 Å,
with a very low barrier in the potential well for the proton (with

the HF-SCF potential, the distance was 2.82 Å). As a
consequence of the nonexistence of a barrier, the proton is
effectively delocalized within the potential well, allowing no
possibility of transferring the proton from one location to
another. It was not possible to do multiple cases using the
B3LYP method because each point in a scan required 9 min; a
5000 point scan would then need 4.5× 104 min, or 750 h.
Therefore we moved to a second-order perturbation method,
MP2. Figure 2 shows the PES for the fully optimized
configuration, using the MP2/6-31+G* method and basis set.
The corresponding wave function is shown in Figure 3; there
is no almost separation into distinguishable wells between the
two nitrogens.

To test the model of proton transfer, the molecules of
methylamine were separated, with the N-N distance constrained
to be either 3.2 Å or 3.6 Å. For either distance, there are two
wells, separated by a barrier sufficient to prevent easy transfer
of the proton between them. That is, the proton spends the
vast majority of its time, or probability, in one or the other well,
with little sharing. In addition to the MP2/6-31+G* calculations,
we did a test set using HF-SCF/6-31G**. The MP2 method
with 6-31+G* basis set of wave functions still allowed for some
electron correlation energy; it was compared with the HF-SCF
method. There was little difference in the critical part of the

E(|∆Ψ|) ) 0.007 648 67

σ ) xE(∆Ψ - E(∆Ψ))2 ) 0.031 412 4

E(|∆V|) ) 0.000 835 558

σ ) xE(∆V - E(∆V))2 ) 0.001 917 73

Figure 2. The PES, fully optimized configuration. (a) Cutaway diagram
of the PES, between the N atoms (which are left and right of the diagram
as shown): a gray scale plot of the energy of the system as the proton
moves through the configuration space defined by the two methylamine
molecules. From this point on, all diagrams shown are MP2/6-31+G*
calculations. The two positions on the axis at the center of the two
areas defined by the narrow section of the dark contour are the energy
minima; the lower, on a lattice point, is at-191.42732 au, the other
-191.42582 au. Note that this is not quite the absolute minimum. The
barrier is-191.42359 au, again on the closest lattice point. (b) Same
as (a), but as a slice along the N-H-N axis, showing the PES; col)
N-N axis, row) orthogonal to the axis, vertical scale) energy, in
au. Note the very low barrier between the positions near the N atoms
(which would be left and right of the diagram in this case).
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potential diagram near the minima. The overlap of the
methylamine wave functions, especially when separated to at
least 3.2 Å, was small enough that the potential for the proton
was little affected by the inclusion or omission of the correlation
energy. Thus, the MP2 minima were about 1% lower than the
HF-SCF minima, but the difference in the minima, which is
the crucial parameter, was appreciably less, approximately 0.3%.
All the results are given for the MP2/6-31+G* calculations. A
calculation with the 3-21G basis set showed it to be seriously
inadequate, with a difference of about 15% in energy from the
other methods; no further work was done with this basis set.

B. Finite Electric Field. With a field added, the energy
minima shift. There are still two potential wells. We are
interested in the magnitude of the change in field which is
required to shift the proton from one well to another. A large
field is needed to bring the two wells to approximate equality
because of polarization; even after this is accomplished, the
wave function is almost entirely in one well or the other. The
changein field required to transfer the proton is relatively small,
and it is this that is the major result of the calculation. Figure
4 shows the potential energy surface, for N-N separation of
3.6 Å, with field components (0.19541, 0, 0.73139)× 109 V
m-1, with the N-N vector at an angle of 61.753° from the
electric field vector when the critical field is reached. This angle
is the result of an empirical search to find the value at which
the field is most effective, and we believe it is fairly close to
optimum. While it is too time-consuming to carry out an
exhaustive search, the field should be approximately parallel
to the molecular dipole. The corresponding values for a 3.2 Å

separation are field, (0.75170, 0, 0.20569)× 109 V m-1; angle
to the N-N vector, 55.0577°.

Figure 5 shows the wave functions for the same separation
of the two nitrogens, with field components as for Figure 4a;
in Figure 6, thez component has increased by only 0.00005×
109 V m-1, while the other components are unchanged. If the
potential surfaces were shown, they would be indistinguishable
on the scale of Figure 4. The wave function peak has shifted
from the potential well at one nitrogen to that at the other. Even
with the shift of only 0.00005× 109 V m-1, the peak of the
wave function in the dominant well is about 10-15 times that
in the other well (that is a shift of this amount in field produces
a change fromA:1 to 1:A′, with 10 < A,A′ < 15. The
conclusions would not be altered if perfect symmetry were
obtained.). The square of the wave function gives the prob-
ability of finding the proton, and therefore the ratio is>100:1
for the shift in the proton itself (i.e., for the square of the wave
function). For the 3.2 Å case, the shift at the critical field is
only somewhat over 3:1, or about 10:1 for the square of the
wave function. It is more appropriate actually to give the
integral of the peak, and we have integrated over a cube 0.6 Å
on a side (0.3 Å, or 3 points of the lattice, from the maximum,
in each direction). The results are as follows: for the lowest
state at 3.6 Å spacing, the probabilities for the proton in the
two wells, with the wave function normalized, are 0.9990 and
0.8954× 10-3, compared to 1.35× 10-3 and 0.9986 with the
field incremented by 10-7 au (0.5× 105 V m-1). For 3.2 Å
the shift is less drastic: probabilities 0.8795 and 0.1205,
compared to 0.1018 and 0.8982 with the field incremented by

Figure 3. The wave function, fully optimized configuration. (a)
Cutaway three-dimensional diagram of the wave function, oriented as
in Figure 2a. The maxima correspond to the light area of the diagram.
(b) Wave function along a slice through the N-N axis, oriented as in
Figure 2b. Observe that there is no separation of the wave function as
between two wells.

Figure 4. Potential energy surface for the configuration of the system
at N -N distance of 3.6 Å: (a) Three-dimensional cutaway of the PES
in the volume containing the two methylamines plus proton, oriented
as in Figure 2a, showing the two potential minima, now easily seen to
be separable. There is an electric field at 61.7° to the N-N axis; in a
Cartesian coordinate system, the N-N axis has components (1.691,
-2.895, 1.312), and the corresponding components of the field are
(0.19541, 0, 0.73139)× 109 V m-1 Data are given in Table 2. (b)
Slice through the same PES, showing the same energy minima in two
dimensions, with same orientation as in Figure 2b.
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10-7 au at the critical field value. If the field is decremented
by 1.8× 10-6 au (9× 105 V m-1), these probabilities become
0.9998 and 1.5× 10-4. If the field is incremented from this
value by the relatively huge change of 10-5 au, the two peaks
become 8× 10-6 and 0.9999+.

V. Discussion

We have established that a small change in field causes a
nearly complete shift of a proton between two wells associated
with a pair of molecules. The wells are associated with the
nitrogens on methylamine molecules, constrained to be separated
by a distance slightly greater than that which they would adopt
if allowed to optimize their position. We have shown that under
that condition, there would be only one potential well for the
proton, hence no transfer.

We have not studied the rate of transfer. For one thing, there
should be at least some effect from the molecular vibrations,
which are not included in these calculations. Our principal
interest is in the question of the field change required to cause
a nearly complete transfer of the proton. It is important to know
that the transfer rate is not so slow as to require over
approximately one microsecond. However, the splitting between
energy levels suggests that transfer is faster than this. In one
dimension, energy splitting greater than approximately 10-28 J
(10-10 au) would suffice, and this criterion is certainly met. We
find that field changes of the order of 104 V m-1 nearly balance
the proton levels at a separation of 3.6 Å. This corresponds to
about 10-25 J, or a frequency of 109 s-1. At 3.6 Å, the rate is
faster. Vibrations are extremely unlikely to slow transfer, so
they should not change our major conclusion. It is likely, in
any case, that tunneling is the dominant contribution to the
transfer rate.

In addition to the effect on the transfer of the proton in the
gas phase, the field could also be considered as to its effects in

a condensed medium. Much of the solvent effect on a molecule
is mediated through the field, so that fields of the magnitude of
those considered in this paper would be likely to make the
calculation relevant in the condensed medium. To the extent
that this is true, we can imagine what our proton-transfer
calculation implies for proton transfer in, for example, a protein.
This is relevant to the situation in a biological membrane
containing ion channels. Calculations have shown that fields
of the order of 109 V m-1 can exist in a protein.19-21 There is
also experimental evidence that suggests that an acetylcholine
receptor channel may have a comparable field.44 A Stark Effect
experiment20 has given a field of approximately 0.4× 109 V
m-1 at the end of a peptide in which the field derived from
backbone dipoles. The existence of a field of this magnitude
in an ion channel, for example, or some other types of proteins,
is quite plausible.

The question of thechangein field is actually more critical
for the application of this calculation to an ion channel. The
electrical potential present, for example, across the membrane
of a neuron, is typically approximately 70 mV. The potential
drops across a membrane of slightly less than 70 Å, so that
there is a field of, on average, approximately 107 V m-1 across
the membrane. This is greater than the change in field required
at 3.6 Å for effectively complete proton shift by a factor of
approximately 200, so that a shift by this amount is clearly
possible in the membrane protein, on depolarization of the
membrane.

It is at least plausible that the shift of a proton under the
influence of change of the membrane field could occur, if the
basic amino acids present in the protein are constrained in
position by other groups in the protein. If the groups come too

Figure 5. Wave function corresponding to the PES of Figure 4. (a)
The wave function in the same form as in 3a. (b) The wave function
in the same form as in Figure 3b.

Figure 6. (a) The wave function corresponding to that of Figure 5a,
but with the field incremented to (0.19541, 0, 0.73144)× 109 V m-1.
The wave function has shifted almost entirely to the other well. The
corresponding PES is not shown, because the Figure would appear
indistinguishable from Figure 4a. (b) Same wave function, in the form
of a slice, as shown in Figure 5b.
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close, they would transfer the proton without control by the
field. If the groups are too far apart, they could not transfer
the proton at all. Because several groups are known to be salt
bridged to other groups,45 the necessary constraint could exist.
It has also just been demonstrated that the selectivity filter of a
bacterial K+ channel must be quite rigid,46 although the
significance for gating must be considered to be indirect.
Finally, the existence of a voltage threshold for ion channel
gating, as opposed to simply adding the energy of the membrane
potential to thermal activation, has possible physiological
consequences.47

VI. Conclusions

1. We have improved a method of determining the three-
dimensional wave function for a potential energy surface. 2.
We have extended the method to allow the inclusion of an
electric field, and found a way to calculate the effect of a small
change in field on the intermolecular transfer of a proton. 3. It
is plausible that proton transfer with fields of the magnitudes
considered here occur in certain important proteins, and further
study of this problem is justified.
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Appendix

Extension to Multidimensional Systems.Extension of the
one-dimensional FGH method to three-dimensions requires
careful manipulation, but is not difficult in principle. In this
appendix we present a theorem which is the foundation of our
three-dimensional FGH algorithm. The theorem can be easily
proved by using the two lemmas stated in this appendix. Since
these lemmas are straightforward results of common knowledge,
we omit the proofs. To simplify our discussion, the following
concepts are useful: leta∈C be a complex number andB )
(bj) ∈CS be anS-dimensional complex column vector; then we
define

and call it theKronecker tensor sumof numbera and column
vectorB. More generally, forR-dimensional column vectorA
) (aj) ∈CR, we define the Kronecker tensor sumC ) A x B
∈ CRS of column vectorA and column vectorB as

Because there is an isomorphismVc betweenR-dimensional
diagonal matrix space andR-dimensional column vector space

(i.e., for anyR-dimensional diagonal matrix Diag(a1, a2, ...,aR))

and obviously

we can extend the definition of Kronecker direct sum for column
vectors to diagonal matrixes (i.e., for any diagonal matrixes and

In the following discussion for a diagonal matrix, the direct
sum will take the above meaning, not the following general
ones.

More generally, leta ∈C be a complex number andB )
(bij) ∈ CRxS be anRS-matrix, then we define

and call it theKronecker tensor sumof a and B, whosejth
column element isa + bij, in which bij is the (i,j)th element of
B. For a nondiagonal matrixA ) (aij) ∈ CRxS′, we define the
Kronecker tensor sumC ) A x B ∈ CR′RxS′S of A andB as

Further we define theformal logarithmof a matrixA as Ln
A ) (ln aij). By using this formal logarithm of a matrix, as for
real positive numbersx andy, we have ln(xy) ) ln x + ln y, so
one can easily prove the following formula

Similarly, one also may define theformal exponentialof a
matrix as

Let Q ) (x, y, z), and FNx, FNy, and FNz be x-, y-, and
z-direction Fourier transform matrixes, respectively. It is well-
known that a direct product factorization of the three-
dimensional Fourier transformENx,Ny,Nz is possible44

Using these definitions, we get the following three-dimen-
sional FGH formalism, because the three-dimensional kinetic
energy operatorT̂Nx,Ny,Nz (P) can be represented as an algebraic

a x B ) (a + b1

a + b2

l
a + bs

)∈ CS (A1)

C ) (a1 x B
a2 x B
l
aR x B

)∈ CRS (A2)

Vc Diag(a1, a2, ...,aR) ) (a1

a2

l
aR

) (A3)

Vc
-1(a1

a2

l
aR

)) Diag(a1, a2, ...,aR)

A ) Diag(a1, a2, ...,aR)

B ) Diag(b1, b2, ...,bS)

A x B ≡ VC
-1[(VcA) x (VcB)] (A4)

a x B )(a + bij)∈ CRxS (A5)

C ) (a11 x B a12 x B ... a1S′ x B
a21 x B a22 x B ... a2S′ x B

l l · · ·
l

aR′1 x B aR′2 x B ... aR′S′ x B
) (A6)

Ln(A X B) ) Ln A x Ln B (A7)

ExpA ) Ln-1A ) (expaij) (A8)

FNx,Ny,Nz
) FNx

X FNy
X FNz

(A9)
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sum of three one-dimensional kinetic energy operatorsT̂Nx(Px),
T̂Ny(Py), andT̂Nz(Pz), i.e.

where P ) (Px, Py, Pz). After FGH discretization we have
Lemma 1. In the matrix form of the FGH discrete momentum
representation before “phase shift”, this sum of eq A10 is a
Kronecker tensor sum as

And the corresponding matrix form after “phase shift” is

whereTNR

FGH (PR) ) XNRTNR (PR)XNR

-1 (R ) x, y, z), andXNz are
the corresponding one-dimensional “phase-shift” transforma-
tions, respectively.

Let HNx,Ny,Nz (Q) be a three-dimensional Hamiltonian repre-
sentation in configuration space andVNx,Ny,Nz (Q) be its potential
energy matrix, then

whereFNx,Ny,Nz

FGH ) (XNx
FNx

XNx

-1) X (XNy
FNy

XNy

-1) X (XNz
FNz

XNz

-1),

is the three-dimensional FGH Fourier transform matrix; it is
related toFNx,Ny,Nz (eq A9) through the “phase shift”. The
factorization in eq A12 is mathematically rigorous, with no
approximation involved. This enables us to avoid the dimension
correlation loss in Cartesian factorization, as in Dutta et al.33

However, it does entail more extensive computation cost. For
example, a (15,15,21) three-dimensional grid in our ab initio
potential energy scanning will produce a 4725× 4725 FGH
Hamiltonian matrix, and to diagonalize such a large matrix a
200 MB physical memory is necessary. A complete run of such
a FGH job on our DEC computer needs about 17 CPU hours.

To set up the three-dimensional Hamiltonian matrixHNx,Ny,Nz

(Q) we use the following three-step scheme corresponding to
the one-dimensional case

whereT(j) represents thejth column of matrixT, ej is the jth
standard unit column vector inq-space,j ) 1, 2, ...,N. The
term “phase shift” is a translation of the momentum grid points
such that the midpoint is sited at the origin. Actually the scheme
of the “phase-shift” of the three-dimensional system is similar
to that of the one-dimensional system. The following theorem
is the key to our factorization scheme of the three-dimensional
FGH algorithm:

Theorem (Direct Factorization of Three-Dimensional
Kinetic Energy).

whereXNx,Ny,Nz ) XNx X XNy X XNz. To prove this theorem one
more lemma is needed.

Lemma 2. Let X, Y, A, andB be matrixes which make the
matrix multiplication valid in the following equations, andIdimA

and IdimB are unit matrixes with dimension dim(A) and
dim(B), respectively, then

A “phase-shift” scheme for the three-dimensional system, like
that for the one-dimensional system, becomes

where

whereΨ(Q) is the eigenfunction of the original Hamiltonian
linear system, i.e.
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